

CHALLENGES FOR PROJECT DEVELOPER

Rene Tammist

UTILITAS AT A GLANCE

UTILITAS

1300 MW installed heat and power capacity

2.4 TWh energy produced **19.3 mln m²** heated buildings

Utilitas is the largest renewable energy producer in Estonia and the largest wind energy producer in Latvia

All Utilitas district heating and cooling networks are efficient district heating systems within the meaning of Energy Efficiency Directive (2012/27/EU)

Sustainable energy solutions that enable to consume energy:

- at any time
- at reasonable price
- while preserving the environment

CARBON NEUTRALITY BY 2030

WIND ENERGY DEVELOPMENT

UTILITAS

TĀRGALE WIND FARM Biggest wind farm in Latvia, 59 MW

14 Vestas V136 wind turbines

150 m height of wind turbine

155 GWh expected annual production

50 000

households annual electricity consumption covered **GROBIŅA WIND FARM** First wind farm in Latvia, 20 MW

33

Enercon E-40 wind turbines

100 m height of wind turbine

50 GWh expected annual production

16 000 households annual electricity consumption covered **SAARDE WIND FARM** Most efficient wind farm in Estonia, 39 MW

230 m height of wind turbine

135 GWh expected annual production

40 000 households annual electricity consumption covered

ELECTRICITY MARKET LIMITATIONS

- Electricity market design deficient to finance new CAPEX investments
- Changes to the design of the electricity market to stimulate new investments will not fundamentally change in the ongoing reform
- The focus remains on national measures

DIFFERENCE BETWEEN AVERAGE AND CAPTURE PRICE

Sum of Monthly % of Spot 120 Gen Type EE - Wind Onshore FI - Wind Onshore mai juuli sept nov jaan närts mai juuli sept nov mairts mai jaan nov nov nov nov nairts sept sept jaar 2019 2021 2022 2023 + -Years (Month) - Months (Month) - Month -

 The addition of new production capacities reduces the producer's capture price

- The balancing energy costs and OPEX cost must be subtracted from the capture price
- The financing of new capacity becomes increasingly difficult over time with today's market structure

Source: ENTSO-E Transparency platform

The graph shows the capture price of onshore wind farms in Estonia and Finland. 100 = baseload (or average) price

CAPITAL COST DIFFERENCES

- Higher capital cost due to perceived country risk profile
- Differencies in the cost of capital are reflected in the LCOE
- Various measures to even out differences

4,5% 4,0% 110 bps 3,5% 3,0% 2,5% 2,0% 1,5% 1,0% 0,5% 0,0% -0,5% -1,0% July 2021 Jan 2021 Jan 2022 July 2022 Jan 2023 July 2023 Finland Estonia

Estonian and Finnish 10-year bond yields

OFFTAKING LIMITATIONS DUE TO LACK OF INDUSTRIAL CONSUMPTION

- Industrial consumption per capita in the Baltic states is 3-5 times lower than in the Nordics
- The potential for Power Purchase Agreements (PPA) in the Baltics is limited
- Risks of cross-border PPAs

RENEWABLE ELECTRICITY AS AN INPUT TO ECONOMIC DEVELOPMENT

Forecasts of electricity consumption by TSOs

Bloomberg

Google Invests \$670 Million to Expand Its **Data Center in Finland**

Plug Power plans \$6 billion hydrogen projects in **REUTERS**® Finland

European backing for Northvolt's battery gigafactory in Sweden

Sweden's H2 Green Steel plans to raise \$1.65 bln for Boden plant

Sources:

Estonia – https://www.elering.ee/sites/default/files/2022-10/Study%20-%20Electricity%20demand%20scenarios.pdf Finland – https://www.fingrid.fi/globalassets/dokumentit/en/news/electricity-market/2023/fingrid_electricity_system_vision_2023.pdf Sweden – https://energimyndigheten.a-w2m.se/Home.mvc?ResourceId=213739

Norway – https://www.statnett.no/globalassets/om-statnett/investor-relations/annual-reports/annual-and-sustainability-report-2022.pdf

CONCLUSION

- Market-based solutions are clearly preferable from the developer's point of view
- In the absence of a better solution, CfDs have proven to be an effective mean to bring the LCOE down
- more complex and risky projects such as offshore wind farms need regulatory certainty and risk mitigation
- In practice, offshore wind farms are and have been built in countries where the price risks of the projects have been addressed
- Where CfDs have not been used, alternative solutions to hedge price risks have been available (e.g. PPAs). A combination of the two would be one way forward.

UTILITAS

Thank you!

12