WHEN TRUST MATTERS

Impact of learning curves on future costs in new markets

Nordic Baltic Energy Conference

Magnus Killingland magnus.killingland@dnv.com 12 December 2023

Impact of learning curves on future costs in new markets

Interconnected factors

Energy security a priority

Vulnerable new markets

DNV contribute to the journey down the learning curves

Future costs and learning rates

Publications available on eto.dnv.com

Key assumptions in our forecasts for future costs

Population	Economy	Technology	Policy
9.6 bn	2×	16-26%	≤250 USD/tCO ₂
 Projected global population in 2050 of 9.6 billion 1% lower than the UN median population forecast at 9.7 billion 	 Global economy will almost double by 2050 Reaching USD 320 trillion in 2050 CAGR 2.5%/year from 2020-2050 (incl. 2020 COVID effects) 	 Average % cost reduction per doubling of installed capacity Solar panels 26%, reducing to 17% Wind turbines 16% Batteries 16% Electrolysers 14% 	Carbon prices will be regional and in 2050 range between \$20-250/tCO ₂ (USD 2023) Other policy examples: • Air pollution measures • RE power support • EV support • Maritime environmental regulations

_

Multiple factors for learning

Learning and experience effects contributing to cost reductions

Learning curve stages

TRL levels can be increased by

R&D, Technology Qualification & Technical Assurance

CRI levels can be increased by Subsidies, Taxes and Financial Derisking Evaluations

Learning rates reductions?

Investments or LCOH per capacity (€ per MW, MWh or Mtpa)

Cost reduction bumps on the road

- Short-term cost inflationary pressure may mask the cost reduction
- Regional protectionism and polarization may hinder effective transfer of technological learning
- Replacing technologies may not fully translate to learning rate impacts on costs

World average levelized cost of solar energy

@DNV 2023

Bumps on the road for on- and offshore

World average levelized cost of wind energy

Units: USD/MWh

Historical data source: GlobalData (2023), DNV analysis

Cost trajectories

- New markets tend to be in the upper part of the ranges

Costs are for the year of financial close for new projects. Levelized cost includes CAPEX, OPEX, grid connection cost, carbon price, and CCS cost. Lines show global weighted average. Shaded areas show spread over 10 regions. Historical data source: GlobalData (2023), Lazard (2023), WoodMac (2023), IRENA (2023).

Capacity trajectories Global cumulative capacity additions of technologies relative to 2022 capacity

Energy security at the top of the agenda

AFFORDABILITY

SUSTAINABILITY

Energy security at the top of the agenda

- Worldwide, energy produced locally is being prioritized over energy imports.
- Governments are willing to pay a premium for locally-sourced energy.
- In the long term, energy security and sustainability will pull in the same direction

Vulnerable new markets

"Slowbalization"

- Less international trade
- More focus on
 - national energy security
 - supply chains
 - local manufacturing

- This often adds to the cost of energy CAPEX everywhere
 - And more for new markets?

Opposing forces shaping the transition

Pros	Cons	
Record spending	Uneven	
on renewables	geographical distribution	
Strong pace	Critical solutions	
for renewables in power	have unfair competition	
Landmark	Let-down	
global agreements	in implementation	
Public support	Competing concerns	
for climate action	on the public agenda	
Front-runners advance solutions	System inertia	

Impact of learning curves on future costs in new markets

Multiple factors

New supported technologies, with *both* market *and* regulatory readiness, gives high learning

Energy security a priority

Long term, energy security *and* sustainability will pull in the same direction

Vulnerable new markets

Opposing forces in the energy transition may affect new markets *more* then others

Thank you for your attention!

Reach out for further details and discussions

Magnus Killingland Segment Lead Hydrogen, CCS and synfuels Energy Systems North Europe

E-mail: <u>magnus.killingland@dnv.com</u> Cel: +45 29 38 83 16

www.dnv.com

